Establishment of novel in vitro mouse chief cell and SPEM cultures identifies MAL2 as a marker of metaplasia in the stomach.

نویسندگان

  • Victoria G Weis
  • Christine P Petersen
  • Jason C Mills
  • Pamela L Tuma
  • Robert H Whitehead
  • James R Goldenring
چکیده

Oxyntic atrophy in the stomach leads to chief cell transdifferentiation into spasmolytic polypeptide expressing metaplasia (SPEM). Investigations of preneoplastic metaplasias in the stomach are limited by the sole reliance on in vivo mouse models, owing to the lack of in vitro models for distinct normal mucosal lineages and metaplasias. Utilizing the Immortomouse, in vitro cell models of chief cells and SPEM were developed to study the characteristics of normal chief cells and metaplasia. Chief cells and SPEM cells isolated from Immortomice were cultured and characterized at both the permissive (33°C) and the nonpermissive temperature (39°C). Clones were selected on the basis of their transcriptional expression of specific stomach lineage markers (named ImChief and ImSPEM) and protein expression and growth were analyzed. The transcriptional expression profiles of ImChief and ImSPEM cells were compared further by using gene microarrays. ImChief cells transcriptionally express most chief cell markers and contain pepsinogen C and RAB3D-immunostaining vesicles. ImSPEM cells express the SPEM markers TFF2 and HE4 and constitutively secrete HE4. Whereas ImChief cells cease proliferation at the nonpermissive temperature, ImSPEM cells continue to proliferate at 39°C. Gene expression profiling of ImChief and ImSPEM revealed myelin and lymphocyte protein 2 (MAL2) as a novel marker of SPEM lineages. Our results indicate that the expression and proliferation profiles of the novel ImChief and ImSPEM cell lines resemble in vivo chief and SPEM cell lineages. These cell culture lines provide the first in vitro systems for studying the molecular mechanisms of the metaplastic transition in the stomach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression.

OBJECTIVES Spasmolytic polypeptide-expressing metaplasia (SPEM) develops as a preneoplastic lesion in the stomachs of mice and humans after parietal cell loss. To identify the commonalities and differences between phenotypic SPEM lineages, SPEM were studied from three different mouse models of parietal cell loss: with chronic inflammation with Helicobacter felis infection; with acute inflammati...

متن کامل

A molecular signature of gastric metaplasia arising in response to acute parietal cell loss.

BACKGROUND & AIMS Loss of gastric parietal cells is a critical precursor to gastric metaplasia and neoplasia. However, the origin of metaplasia remains obscure. Acute parietal cell loss in gastrin-deficient mice treated with DMP-777 leads to the rapid emergence of spasmolytic polypeptide/trefoil factor family 2 (TFF2)-expressing metaplasia (SPEM) from the bases of fundic glands. We now sought t...

متن کامل

Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia.

Gastric cancer in humans arises in the setting of oxyntic atrophy (parietal cell loss) and attendant hyperplastic and metaplastic lineage changes within the gastric mucosa. Helicobacter infection in mice and humans leads to spasmolytic polypeptide-expressing metaplasia (SPEM). In a number of mouse models, SPEM arises after oxyntic atrophy. In mice treated with the parietal cell toxic protonopho...

متن کامل

Altered expression of a putative progenitor cell marker DCAMKL1 in the rat gastric mucosa in regeneration, metaplasia and dysplasia

BACKGROUND Doublecortin and calcium/calmodulin-dependent protein kinase-like-1 (DCAMKL1) is a candidate marker for progenitor cells in the gastrointestinal mucosa. Lineage cells in the gastric mucosa are derived from progenitor cells, but this process can be altered after injury. Therefore, we explored DCAMKL1 expression under pathological conditions. METHODS An immunohistochemical analysis w...

متن کامل

I-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model

Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 307 8  شماره 

صفحات  -

تاریخ انتشار 2014